Understanding antibiotic use in *Staphylococcus* sepsis Short Course in Critical Infection 06/11/2023

> Ravindra (Ravi) Dotel MBBS, FRACP, MMed, PhD (candidate) Infectious Diseases Staff Specialist Blacktown Hospital, WSLHD Bankstown Hospital, SWSLHD

Conflict of interest

• Nil to declare

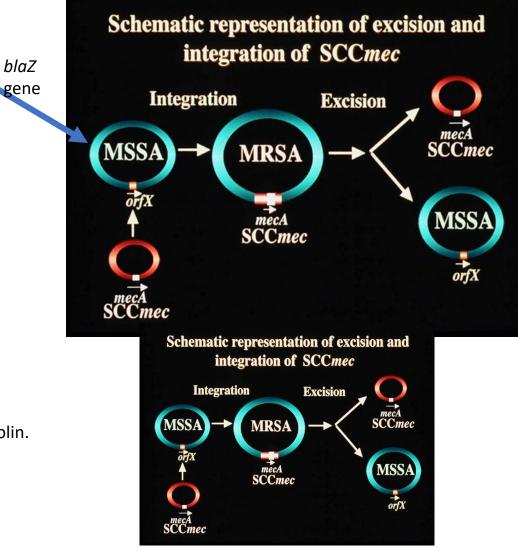
Outline

Introduction	Epidemiology
	Relation between carriage and infection
Treatment:	PSSA
	MSSA
	MRSA

Staphylococcus toxic shock syndrome

Staphylococci

- S. aureus
 - Penicillin-susceptible S. aureus (PSSA)
 - Methicillin-susceptible S. aureus (MSSA)
 - Methicillin-resistant S. aureus (MRSA)
- Coagulase-negative Staphylococcus
 - S. lugdunensis
 - Behaves like and treated like MSSA


PSSA

- Others, such as S. epidermidis
 - Some (some strains of CoNS) remain susceptible to flucloxacillin/cefazolin.
 - Rarely susceptible to penicillin

Diseases

- Bacteraemia
- Toxic shock syndrome (*S. aureus*)

S. aureus colonisation

- Anterior nares (most common site of colonisation)
 - Exclusive throat or rectal carriage can also occur
- Three carrier types
 - Persistent carriers (20% adult population)
 - Intermittent carriers (30%)
 - Non-carriers (50%)
- Most are colonised with MSSA
 - 30% MSSA, 0.8% MRSA (2001/02, USA gen. pop.)

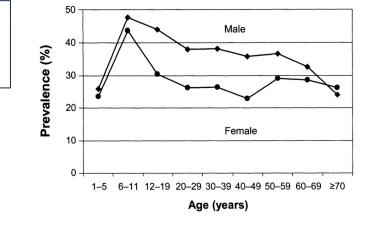
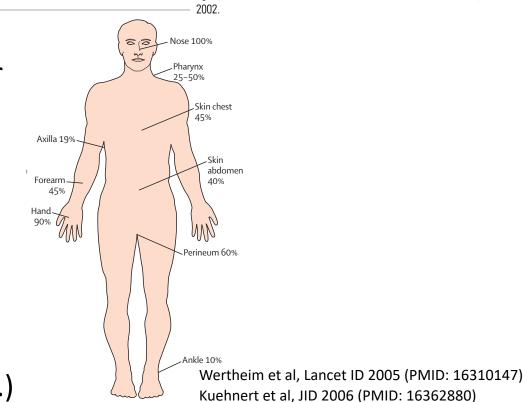



Figure 1. Prevalence of Staphylococcus aureus nasal colonization, by

age and sex----National Health and Nutrition Examination Survey, 2001--

Infants (age <1 year)

Peak colonisation at

S aureus nasal carriers

1 month (50-60%)

There is a direct correlation between *S. aureus* colonisation and infection

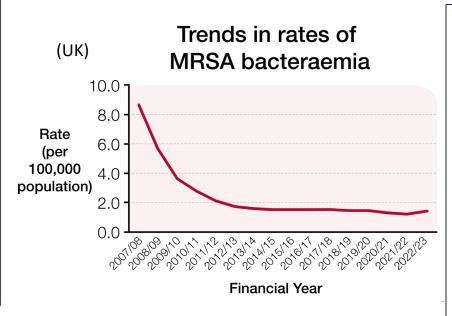
- Colonisation ==> infection
 - ~90% isolates match
 - MSSA \geq 3-fold risk vs. non-carrier
 - MRSA ~20-fold risk vs. non-carrier

Von Eiff et al, NEJM 2001 (PMID: 11136954) Wertheim et al, Lancet 2005 (PMID: 15325835) Marzec et al, AJIC 2016 (PMID: 27038392)

- Not colonized ≠ infection
- MSSA colonized -> MSSA infection
- MRSA colonized -> MRSA infection
- Chance of MRSA infection is unlikely if the MRSA screening was negative during the index hospitalization

Epidemiology

S. aureus is the most common cause of bacteraemia


```
<u>% MRSA amongst S. aureus in blood</u>
<u>culture varies by region/countries</u>
In Australian in 2021: MRSA (17%)
```

Greece, Romania = MRSA (40%)

Norway, Netherlands, Iceland = MRSA (1-2%)

SENTRY (1997-2016) data: AAC 2019 (PMID: 31010862) Coombs et al, CDI 2022 (PMID: 36529133) UK Health Security Agency, 2022/23 data Rountree et al, MJA 1978 (PMID: 152838) Coombs et al, Microorganisms 2022 (PMID: 36014068) **TABLE 3** Rank order of pathogens causing bloodstream infection worldwide submitted to the SENTRY Program, 1997–2016, by age group

	Pathogen (%) for patients aged:					
Rank	<1 yr	1–5 yrs	6–18 yrs	19–49 yrs	50–64 yrs	>64 yrs
1	S. aureus (16.4)	S. aureus (15.9)	S. aureus (26.4)	S. aureus (24.9)	S. aureus (23.1)	E. coli (26.6)
2	E. coli (13.7)	S. pneumoniae (11.4)	E. coli (12.6)	E. coli (18.1)	E. coli (19.9)	S. aureus (20.1)
3	K. pneumoniae (8.6)	E. coli (9.2)	P. aeruginosa (6.6)	K. pneumoniae (7.3)	K. pneumoniae (8.6)	K. pneumoniae (8.0)
4	E. faecalis (6.9)	K. pneumoniae (7.9)	K. pneumoniae (6.5)	P. aeruginosa (5.4)	P. aeruginosa (5.9)	E. faecalis (5.9)
5	S. epidermidis (6.3)	P. aeruginosa (5.7)	S. epidermidis (5.1)	E. faecalis (4.8)	E. faecalis (5.3)	P. aeruginosa (5.4)

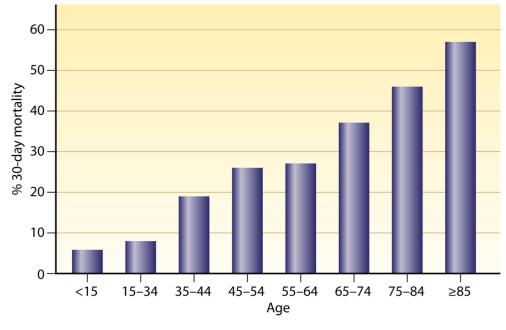
PSSA Pre-penicillin: 100% *S. aureus*

were PSSA

By 1960's: most *S. aureus* were penicillin-resistant (~10% remained susceptible to penicillin)

Since ~2015: PSSA has increased, now 20-25% S. aureus are PSSA

S. aureus – a deadly bacteria


- Bundaberg tragedy (27 Jan 1928)
 - 18 out of 21 children became seriously ill within 7 hours following diphtheria immunisation with fever, vomiting, diarrhoea, seizure, loss of consciousness
 - 12 children died within 24 hours (aged 2 -7 years)
 - *S aureus* sepsis (toxic shock syndrome) due to contaminated diphtheria toxin-antitoxin vials
 - Penicillin discovered 1929; clinical use 1945

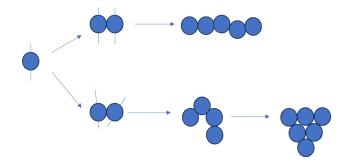
Brisbane Courier (1928)

S. aureus bacteraemia is almost always fatal without an antibiotic treatment

Antibiotic	Mortality	Ref
Pre-penicillin	80-90%	Lancet 1960 (PMID: 13831996)
Penicillin	~25%	AMA AIM 1954 (PMID: 13180039)
1950's (erythromycin, chloramphenicol, tetracycline, streptomycin)	40-60%	AJM 1957 (PMID: 13402795); Lancet 1959 (PMID: 13631970)
Methicillin	~25%	NEJM 1962 (PMID: 13860546)
Vanomcycin	~25%	NEJM 1960 (PMID: 14409280); CMI 2022 ((PMID: 35339678)

<u>Higher mortality with increasing age (despite tx)</u>

Van Hal, CMR 2012 (PMID: 22491776)


Even today: Mortality is 16-20% at one month, and 22-33% at three months

Bai et al, CMI 2022 (PMID: 35339678) Includes studies published since 2011

<u>Treatment</u>: *Staphylococcus aureus* bacteraemia

Lab notification of a positive blood culture result

- Gram-positive cocci in clusters --> *Staphylococcus* species
- <u>Approach</u>
 - Assess patient is the clinical picture consistent with an infection?
 - NO: wait for further identification
 - YES: repeat blood culture and start anti-staphylococcal antibiotic
 - If already known bacteraemia: How many days since the effective antibiotic? —> identify and treat source
- Which antibiotic?
 - 17% S. aureus are MRSA
 - Recent negative MRSA screening swab makes MRSA infection unlikely
 - Nil MRSA risk factors (if swab not available) less likely MRSA
 - Coagulase-negative Staphylococci a common contaminant!

• Usually within 3-4 hours, micro lab can provide a definitive answer

<i>mec</i> gene	<i>fem/nuc</i> gene	Staphylococci
Negative	Positive	MSSA/PSSA
Positive	Positive	MRSA
Positive	Negative	Coag. neg Staphylococcus

- Further confirmation and antimicrobial susceptibility expected within 24-48 hours
- If automated system reports penicillin-resistant, taken as "Penicillin-resistant"
- If reports penicillin-susceptible, further testing is done to confirm this, i.e., "truly penicillin-susceptible" (Henderson et al, JAC 2023, PMID: 37071589)

<u>Penicillin-susceptible</u>: PSSA bacteraemia —> treatment

- Treatment options:
 - Benzylpenicillin 1.8g q4h
 - Flucloxacillin 2g q6h
 - Cefazolin 2g q8h
- If penicillin susceptible, why not use penicillin?
 - Potential advantages of penicillin
 - Lower MIC distribution for penicillin compared with other active β -lactam agents
 - Higher free non-protein bound plasma drug concentration

Staphylococcus aureus			
Penicillin	S		
Flucloxacillin	S		
Cefazolin	S		
Vancomycin	S		

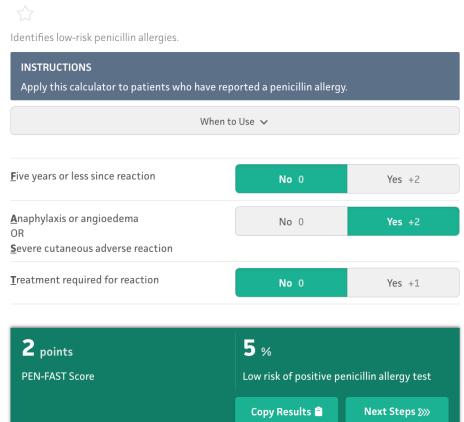
Benzylpenicillin versus flucloxacillin for penicillin-susceptible *Staphylococcus aureus* bloodstream infections from a large retrospective cohort study

A. Henderson^{a,b,c,*}, P. Harris^{a,b,d}, G. Hartel^{e,f}, D. Paterson^b, J. Turnidge^g, J.S. Davis^{h,i}, S.Y.C. Tong^{h,j,k}

Table 1

Comparison of variables for patients treated with benzylpenicillin compared with flucloxacillin^a

Variable	Benzylpenicillin ($N = 315$)	Flucloxacillin ($N = 600$)	P-value
Outcomes			
Median LOS (days)	23	23	0.59
7-day mortality	5 (1.6)	41 (6.8)	<0.001
30-day mortality	33 (10.5)	85 (14.2)	0.11

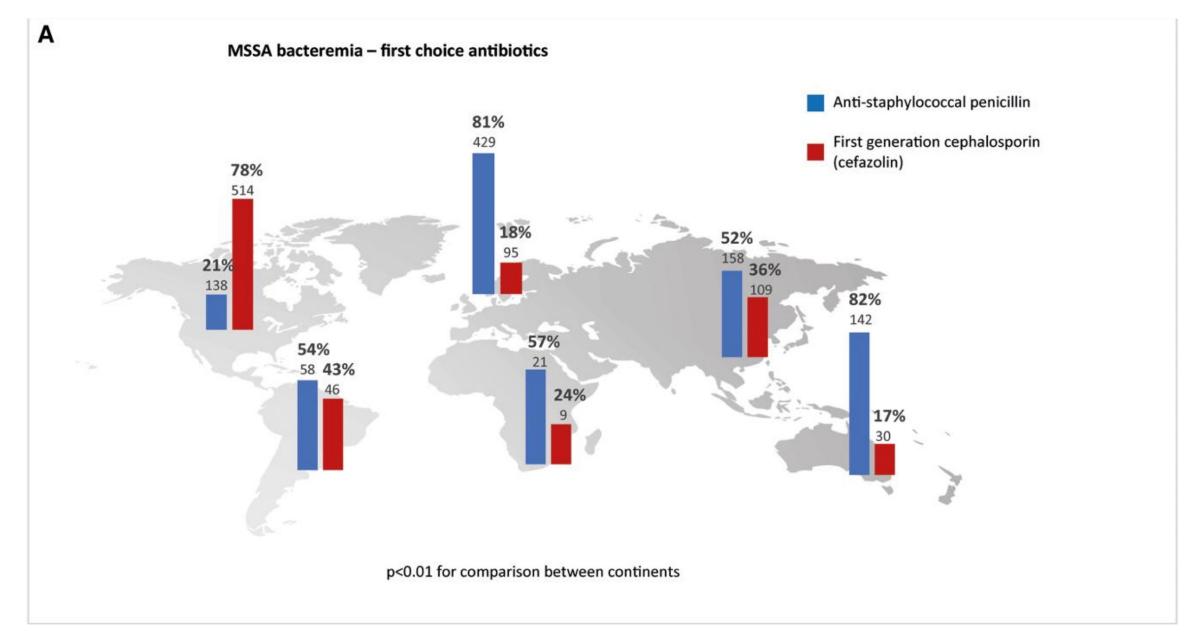

Table 3Propensity-score-adjusted analysis of 30-day mortality				
Variable	OR (95% CI)	<i>P</i> -value		
Treatment with flucloxacillin	1.06 (1.01–1.1)	0.03		

A large RCT is currently actively recruiting (SNAP trial)

"Penicillin allergy"

- Up to 10% of patients report allergy to penicillin
 - 95% do not have a true allergy
- PEN-FAST score of 2 or less
 - Safe to proceed with direct oral challenge (equivalent to skin testing)
 - PO 250mg amoxicillin
 - Monitor for 2 hour (rash, urticaria, diffuse erythema, angioedema, decreased SpO2, or anaphylaxis)
 - If nil adverse reaction, directly de-label penicillin allergy

Penicillin Allergy Decision Rule (PEN-FAST)

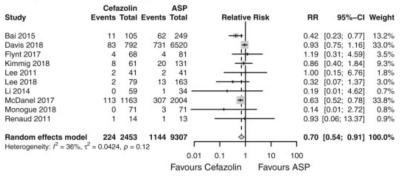

MD calculator (Trubiano et al)

Copaescu and Trubiano et al, JAMA int med 2023 (PMID: 37459086)

<u>Methicillin-susceptible</u>: MSSA bacteraemia —> treatment

- Treatment options:
 - Flucloxacillin 2g q6h
 - Cefazolin 2g q8h
- Which is better? Flucloxacillin or cephazolin
 - <u>Flucloxacillin</u> -> higher odds of nephrotoxicity, liver toxicity, and allergic reactions
 - <u>Cefazolin</u> -> Inoculum effect, hence potential treatment failure
 - A significant increase in the minimal inhibitory concentration of an antibiotic when the number of organisms inoculated is increased (PMID: 25000230, PMID: 29977970)

Staphylococcus aureusPenicillinRFlucloxacillinSCefazolinSVancomycinS


Survey: 2031 physicians from 71 different countries on 6 continents

Westgeest et al, CID 2023 (PMID: 37310693)

MSSA bacteraemia -> treatment

- Flucloxacillin or cefazolin?
 - No difference in 30-day mortality (large Australian retrospective cohort study, 7312 episodes of SAB, fluclox (90%), cefazolin (10%) -PMID: 29499317
 - 2019 systematic review PMID: 30928559
 - <u>Lower 30-day mortality</u> with cefazolin (RR 0.70 (95% CI 0.54 0.91)) and <u>less nephrotoxicity</u> (RR 0.36 (95% CI 0.21 0.59))
 - Low quality evidence: Non-randomised studies
- What about other β -lactams (non-fluclox/non-cefazolin) in the treatment of MSSA BSI
 - There are no RCTs observational studies have shown mixed results
 - Used from the start or for completion of treatment after the clearance of BC
 - Ceftriaxone versus SOC: 30-day mortality: Non-inferior PMID: 35326838
 - Systematic review of retrospective cohort studies

b) 30-day all-cause mortality

Cephazolin vs. flucloxacillin PMID: 30928559

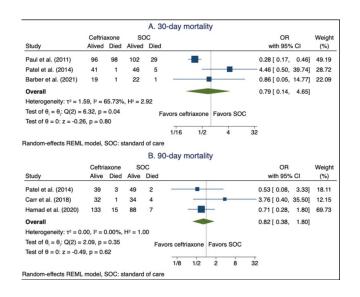


Figure 3 Meta-analysis of 30-day mortality (A) and 90-day mortality (B).

Ceftriaxone vs. SOC PMID: 35326838

<u>MSSA</u> bacteraemia -> treatment (2nd line, 3rd line...)

Vancomycin: NO NO

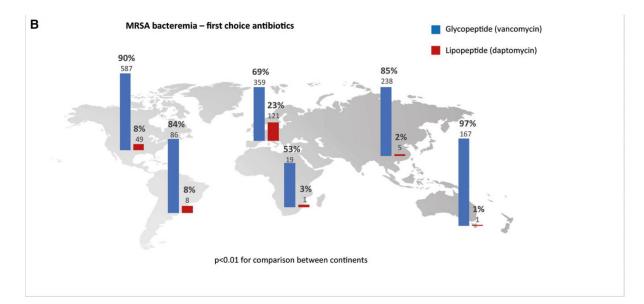
- Several cohort studies have reported poor outcomes with vancomycin treatment of MSSA BSI
- Increased mortality, prolonged bacteraemia, higher relapse (2-3 higher risk with vancomycin) PMID: 22011388, PMID: 17664322, PMID: 23985343
- If penicillin allergic -> PEN-FAST assessment
- Use daptomycin if cannot use flucloxacillin or cefazolin (see below)

Other Antibiotics:

- **Daptomycin**: Non-inferior to SOC (40% MRSA, 60% MSSA): Total 245 patients NEJM 2006; PMID: 16914701
- <u>Linezolid</u>: Non-inferior to vancomycin in catheter related SAB (44% MRSA, 56% MSSA): Total 142 patients PMID: 19072714
- <u>Newer cephalosporins</u>: Ceftobiprole non-inferior to daptomycin: Total 390 patients (26% MRSA, 74% MSSA) -NEJM 2023, PMID: 37754204

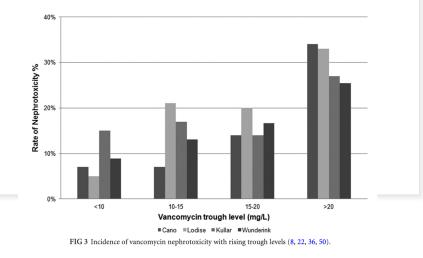
Salvage treatment for persistent bacteraemia (>3-4 days of bacteraemia despite source control or occult source)

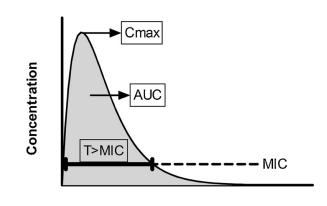
• Daptomycin + ceftaroline combination: PMID: 30858203


A large RCT is currently underway: flucloxacillin versus cefazolin (SNAP trial)

<u>Methicillin-resistant</u>: MRSA bacteraemia —> treatment

- Current treatment of choice is vancomycin
- But is vancomycin the best antibiotic?
 - Higher failure in MSSA bacteraemia
 - Need drug level monitoring
 - Trough measurement versus AUC/MIC monitoring
 - <u>Newer anti-MRSA therapies are</u> <u>available</u>: Linezolid, daptomycin, ceftaroline, ceftobiprole


Staphylococcus aureus


Survey: 2031 physicians from 71 different countries on 6 continents

Vancomycin level monitoring

- Vancomycin has dose-related nephrotoxicity.
 - High trough (>20): Nephrotoxicity
 - Low trough (<15 if serious infections): Treatment failure
- Previously recommended trough target of 15-20mg/L was never the real target but a surrogate for true target of AUC/MIC of >400
- More recent evidence suggests many patients can achieve a goal AUC/MIC with troughs less than 15 mg/L.

Van hal et al AAC 2013, PMID: 23165462

Time

Fig. 2. Concentration-time curve showing the pharmacokinetic parameters C_{max} (maximal concentration) and AUC (shaded area) and the PK/PD index Time > MIC.

Pharma Research 2018 (PMID: 30033398)

Rybak et al, AJHP 2020 (PMID: 32191793) Tsutsuura et al, BMC 2021 (PMID: 33549035)

Vancomycin level monitoring

- <u>AUC/MIC</u> target: **400-600** μg x hr/mL or mg x hr/L
 - Lower risk of nephrotoxicity
 - Statistical trend towards better treatment success
- Can collect a random level -> software programs use Bayesian modelling to determine AUC/MIC and provide recommendation for subsequent dosing
- AUC/MIC recommended in serious MRSA infections, critically ill patients, with underlying renal impairment, or at risk of nephrotoxicity
- Limitations:
 - Difficult to attain the target AUC/MIC if vancomycin MIC is >1
 - Needs some expertise/experience to perform the calculations
 - Use in dialysis patients

MRSA bacteraemia -> treatment

- Newer antibiotics:
 - Linezolid: non-inferior to vancomycin in catheter-associated MRSA BSI (63 patients with MRSA) earlier slide
 - Daptomycin: non-inferior to vancomycin (89 patients with MRSA) earlier slide
 - <u>Ceftobiprole</u>: non-inferior to daptomycin (101 patients with MRSA) earlier slide
- Salvage therapy for persistent MRSA bacteraemia like in MSSA
 - Daptomycin plus ceftaroline combination
- Other considerations: <u>β-lactams plus vancomycin</u>. CAMERA-2 RCT (Tong et al, JAMA 2020 PMID: 32044943)
 - Flucloxacillin +vancomycin: better bacterial clearance but with added nephrotoxicity risks
- A large RCT is currently underway (SNAP trial)
 - Vancomycin+cefazolin versus vancomycin alone
 - Vancomycin versus daptomycin (future addition)

Staphylococcal toxic shock syndrome

- Can occur with PSSA, MSSA, or MRSA
 - Bacteraemic or non-bacteraemic infections
 - Well known is infection from tampon use in menstruating women
- Presentation like streptococcal toxic shock syndrome
 - Hypotension with 2 or more of following: renal impairment, coagulopathy, elevated bilirubin, ARDS, generalized rash or skin necrosis.
- Mx (in addition to standard antibiotics)
 - Clindamycin 600mg IV q8h x 3 days
 - IVIG 2g/kg if unresponsive to fluid resuscitation
- A large RCT is currently underway:
 - Clindamycin +/- usual care (SNAP trial)

Some S. aureus toxins Haemolysins Leucocidins (e.g., PVL) TSST-1 Exfoliative toxins Enterotoxins

Evidence

- Based on observational studies
- In vitro data
- <u>Pilot RCT (CASSETTE study)</u>:
- *31 patients with severe *S. aureus* infections
- *Better 90-day survival in those who received clindamycin

S. aureus Network Adaptive Platform (SNAP) trial

Currently recruiting (~1600 patients enrolled) – 03/11/2023 (86 active sites in 7 countries)

	Domain			
Silo	Backbone antibiotic	Adjunctive antibiotic	Early oral switch	
PSSA	(Flu)cloxacillin vs			
	penicillin		Continued IV vs early	
MSSA	(Flu)cloxacillin vs		oral switch at either day	
	cefazolin	No clindamycin vs	7 (uncomplicated	
MRSA	(Vancomycin/	clindamycin	disease) or day 14	
	daptomycin) vs		(complicated disease)	
	(Vancomycin/			
	daptomycin) + cefazolin			

MRSA: Vancomycin versus Daptomycin (future addition)

Summary

- Carriage and infection
 - Invasive infection due to own carriage isolates
 - True non-carriers at low risk of developing invasive S. aureus infections
- PSSA
 - Now accounting for ~25% of *S. aureus* bacteraemia
 - Benzylpenicillin treatment may lead to better outcomes (a/w RCT result)
- MSSA
 - Cefazolin treatment may lead to better outcomes (a/w RCT result)
 - In penicillin-allergic patients: Calculate PEN-FAST score for penicillin allergy assessment
 - Avoid vancomycin in MSSA
- MRSA
 - Vancomycin the current standard therapy but has drawbacks
 - A/w RCT results -> role of additional cefazolin; vancomycin versus daptomycin head-to-head
- Toxic shock:
 - Adjunctive anti-toxin therapy lacks clear evidence
 - A/w RCT results -> role of adjunctive clindamycin